

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 3rd Semester Examination, 2019

CMSHGEC03T/CMSGCOR03T-COMPUTER SCIENCE (GE3/DSC3)

Time Allotted: 2 Hours

(g) Define thread.

Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

GROUP-A

Answer any four questions from the following: 2×4 = 8
 (a) Under what circumstances would a user be better off using a time-sharing system, rather than a personal computer or single-user workstation?
 (b) What is multi-processing system?
 (c) What is non pre-emptive scheduling?
 (d) What is virtual memory?
 (e) What is deadlock?
 (f) What is meant by Dispatch latency?

GROUP-B

		Answer any four questions from the following	$8 \times 4 = 32$
2.	(a)	What do you mean by a process?	2
	(b)	Design and describe a two state and five state process transition diagram.	2+4
3.	(a)	What is Semaphore?	2
	(b)	How a semaphore can be used to solve a producer-consumer problem of processes?	4
	(c)	What is Race Condition?	2
4.	(a)	Why the page size in paging is always a power of 2?	2
	(b)	What do you mean by External Fragmentation?	2
	(c)	Design and describe the paging technique for memory management.	4

CBCS/B.Sc./Hons./Programme/3rd Sem./Computer Science/CMSHGEC03T/CMSGCOR03T/2019

- 5. (a) What are the necessary and sufficient conditions for deadlock to occur?

 (b) When a system is called 'is in a safe state'? Discuss it with a suitable example.

 3

 (c) Define Belady's Anomaly.
- 6. Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

Process	Burst Time	Priority
P_1	10	3
P_2	1	1
P_3	2	3
P_4	1	4
P_5	5	2

The processes are assumed to have arrived in the order P_1 , P_2 , P_3 , P_4 , P_5 , all at time 0.

- (a) Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, a non-preemptive priority (a smaller priority number implies a higher priority,) and RR (quantum = 1) scheduling.
- (b) What is the turnaround time of each process for each of the scheduling algorithms in part (a)?
- 7. (a) What is the difference between paging and segmentation?
 - (b) Define Dynamic Loader and Dynamic Linker.
 - (c) What is TLB?
- 8. Write short notes on: (any *two*) $4 \times 2 = 8$
 - (a) PCB
 - (b) Thrashing
 - (c) Batch processing system.
