

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 1st Semester Examination, 2019

CEMACOR01T-CHEMISTRY (CC1)

Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

Answer any three questions taking one from each unit

UNIT-1

1.	(a)	Draw the orbital picture of $CH \equiv C - CHO$ indicating the state of hybridization of each carbon atom.	2
	(b)	Which one of the following compounds shows higher stability and why?	2
	(=)		
	(c)	Calculate the DBE and suggest a suitable structure for the following: C2H3NO4.	2
	(d)	Compare the 'heat of combustion' values of the following compounds with reason: 1-butene, 2-butene (cis and trans) and isobutene.	3
	(e)	cis-1, 2-dibromoethene has higher boiling point than its trans isomer, but melting point of the trans isomer is higher than that of the cis-isomer. Explain.	2
	(f)	Draw the following π MOs:	3
		(i) SOMO of allyl radical,	
		(ii) LUMO of 1, 3-pentadienyl cation,	
		(iii) HOMO of buta-1, 3-diene.	
	(g)	Which one of the following exhibits greater dipole moment and why?	2
		and	
2	(a)	Justify the following statements with proper reasoning:	3
، ش	(a)	(i) When dissolved in concentrated. H ₂ SO ₄ , cyclooctatetraene forms a	
		monocation which shows aromatic character.	
		(ii) When treated with CH₃MgBr, cyclopenta-1, 3-diene forms a mixture of CH₄ and another Grignard reagent.	
	(L)	Write all the canonical structures of $H_2N - CH = CH - \overset{\oplus}{C} = O$ and identify the	2
	(D)	stablest one with reason.	
	(~)	The bond dissociation energy of aliphatic C = H bond is considerably smaller in	2
	(c)	PhCH ₃ than in CH ₄ . — Explain.	

CBCS/B.Sc./Hons./1st Sem./Chemistry/CEMACOR01T/2019

(d) Assign the following species as aromatic, antiaromatic, nonaromatic or homoaromatic. Give explanation (any *three*).

3

- (ii) N
- (iii)
- (iv) \oplus
- (e) Compare the dipole moment of p-nitroaniline and 2, 3, 5, 6-tetramethyl-p-nitroaniline giving reason.
- 2

(f) What do you mean by Valence tautomerism? Give an example.

- 2
- (g) Why the boiling point of 2-nitroresorcinol is lower than that of resorcinol?
- 2

UNIT-2

3. (a) Dichlorocarbene (:CCl₂) mainly exists in singlet state whereas diphenyl carbene (:CPh₂) prefers the triplet state. Explain with orbital picture.

2

(b) Rate of thermal decomposition to yield nitrogen is much faster for dibenzyldiazene (PhCH₂-N=N-CH₂Ph) in comparison to di-^tbutyldiazene (Me₃C-N=N-CMe₃)— Explain.

2

(c) Though nitro group is more powerful electron withdrawing group than cyano group, trinitromethyl carbanion is more or less of same stability as tricyanomethyl carbanion. Explain.

2

(d) Which of the following two carbocations is more stable and why?

2

4. (a) Classify the following reactions as addition, elimination and substitution reaction:

2

(ii)
$$H_2O, H \stackrel{\oplus}{\longrightarrow} OI$$

(iii)
$$con. HNO_3 \rightarrow NO_2$$
 $con. H_2SO_4$

(iv) $PhCH_2CH_2Br \xrightarrow{KOH} Ph-C=CH_2$ H

2

(b) H₃C* is planar but F₃C* is pyramidal. Explain.
(c) Explain the following nucleophilicity order

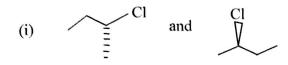
2

(i) $Cl^- > Br^-$ in DMSO;

2

- (ii) $Br^- > Cl^-$ in MeOH.
- (d) Write the structure of the stabilised cation formed after possible 1, 2-shift in the following species—

2


CBCS/B.Sc./Hons./1st Sem./Chemistry/CEMACOR01T/2019

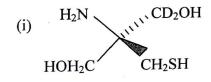
UNIT-3

5. (a) Justify or criticise the following statements with proper examples:

- 3
- (i) All meso-compounds are optically inactive in spite of the presence of more than one chiral centres.
- (ii) E-isomer of an alkene will be necessarily the trans isomer.
- (b) Label each of the following pair of compounds as homomers, enantiomers or diastereomers:

3

(ii)
$$H_3C$$
 H CH_3 NH_2


and

$$H$$
 H_3C
 E
 NH_2

(iii) Br CH₃ H OH

(c) Assign the stereocentre in each of the following compounds as R or S:

2

(ii) Ph

(d) Which of the following compounds will be resolvable? Give reason.

2

(e) When a little acid is added to an aqueous solution of optically active 2-butanol, the solution gradually loses its optical activity. Explain.

2

(f) How would you resolve the racemic modification of lactic acid?

2

(g) Give examples of molecules having the following point groups (any two).

2

 $(i) \quad D_{3h}$

(ii) C_{3h}

- (iii) Tetrahedral (T_d)
- 6. (a) Draw the Fischer projection formula of (2R, 3s*, 4S)-2, 3, 4-tribromopentane. Comment on its chirality.

3

CBCS/B.Sc./Hons./1st Sem./Chemistry/CEMACOR01T/2019

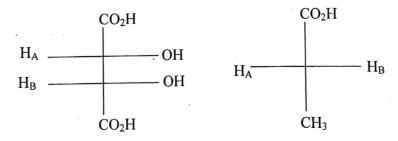
(b) Label the following pairs of compounds as homomers, constitutional isomers, diastereomers or enantiomers (any *three*):

3

2

2

2


2

(i)
$$CH_3$$
 $C = C$ H and H $C = C$ H CH_3H_2C

(ii) Br
$$\longrightarrow$$
 and Cl \longrightarrow Br

(iv)
$$H = \begin{bmatrix} CH_3 \\ E \\ C \\ CI \end{bmatrix}$$
 Br and $H = \begin{bmatrix} CH_3 \\ E \\ CI \\ Br \end{bmatrix}$

- (c) All epimers are diastereomers, but all diastereomers are not epimers. Justify or criticise the statement with suitable examples.
- (d) A sample of 2-butanol shows specific rotation of +4.056°. Specific rotation of pure (R) enantiomer is −13.52°. Which enantiomer is in excess in the above sample, the (R) or (S)? Calculate the enantiomeric excess.
- (e) Label the marked (H_A, H_B) hydrogens in the following compounds as homotopic, enantiotopic or diastereotopic. Explain.

- (f) Indicate the symmetry elements and point group of 1, 3, 5-tribromobenzene.
- (g) Designate (S) -CH₂OH-CHOH-CHO as having D/L -configuration.

1008

4