

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 5th Semester Examination, 2021-22

CEMACOR11T-CHEMISTRY (CC11)

Time Allotted: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

UNIT-I

		Answer any two questions from the following	$12 \times 2 = 24$
1.	(a)	Explain the nature of Jahn-Teller distortion expected for an octahedral complex of Cu(II) ion.	3
	(b)	$[NiCl_4]^{2-}$ is paramagnetic, whereas $[PtCl_4]^{2-}$ is diamagnetic, although both Ni(II) and Pt(II) are d^8 ions. — Explain.	3
	(c)	With the help of approximate Orgel diagram explain the electronic spectrum of $\left[V(H_2O)_6\right]^{3^+}$.	3
	(d)	Crystal field splitting of the <i>d</i> -orbital is more pronounced in the octahedral field than that in the tetrahedral field. — Explain.	3
2.	(a)	Between the two redox couple, $[Co(OH_2)_6]^{3+}/[Co(OH_2)_6]^{2+}$ and $[Co(NH_3)_6]^{3+}/[Co(NH_3)_6]^{2+}$ which one is more oxidizing and why?	3
	(b)	$\begin{array}{lll} K_2Ca[Cu(NO_2)_6] \ \ and \ \ K_2Ba[Cu(NO_2)_6] \ \ exhibit \ \ static \ \ Jahn-Teller \ \ distortion \ \ while \\ Tl_2Pb[Cu(NO_2)_6] \ \ shows \ \ dynamic \ \ Jahn-Teller \ \ distortion. \ \ Explain. \end{array}$	3
	(c)	Ni(II) is smaller in size in the square planar environment as compared to that in tetrahedral environment, but reverse is the case with $Ag(I)$. — Explain.	3
	(d)	Mn ²⁺ (aq) is pale in colour whereas aqueous solution of MnO ₄ ⁻ is intense in colour. — Explain.	3
3.	(a)	Account for the following order of lattice enthalpies of the octahedral fluorides of $3d$ (M^{2+}) ions:	3
		$Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} > Zn^{2+}$	
		Explain why $Ni(CO)_4$ is tetrahedral while $[Ni(CN)_4]^{2-}$ is square planar.	2
	(c)	Electronic spectrum of $[CoF_6]^{3-}$ shows two maxima in the visible region. — Explain.	3
	(d)	Co^{2+} (d^7 , high spin) has a magnetic moment in the range 4.8-5.2 BM in octahedral field, while in tetrahedral environment the value is in the range 4.0-4.4 BM. The reverse type of observation is true for Ni^{2+} ion. — Explain.	2+2

CBCS/B.Sc./Hons./5th Sem./CEMACOR11T/2021-22

4.	(a)	Use Jahn-Teller theorem to decide if $[Cr(H_2O)_6]^{3+}$ will have an un-distorted octahedral structure.	3
	(b)	State the selection rules for electronic transition in the spectra of metal complexes.	2
	(c)	Fe_3O_4 has an inverse spinel structure whereas Mn_3O_4 has a normal spinel structure. — Explain the observation from CFT.	3
	(d)	Find out the ground state term for V^{3+} ion.	2
	(e)	Calculate the spin-only magnetic moment in Bohr Magneton for $K_3[CuF_6]$.	2
		UNIT-II	
		Answer any one question from the following	16×1 = 16
5.	(a)	What is the common oxidation state of lanthanide elements? Why is it so?	1+2
	(b)	Give the general electronic configuration of lanthanides and explain the trends in ionic radii of M^{3+} ion of this class.	1+2
	(c)	4s orbitals are filled before the $3d$ orbitals but during ionization $4s$ electrons are removed before $3d$ electrons. — Comment.	2
	(d)	Discuss how the stability of the oxidation states changes from $3d$ to $4d$ to $5d$ transition metals.	3
	(e)	Lanthanides have more or less identical chemical properties while d -block elements differ widely in this respect. — Explain.	3
	(f)	The electronic absorption spectra of tri-positive lanthanide ions give rise to multiple sharp peaks. — Explain.	2
6.	(a)	What are the common oxidation states of Cu, Ag and Au? — Explain.	3
	(b)	Why do actinides show larger number of oxidation states compared to lanthanides?	3
	(c)	Which one of the following are diamagnetic and which are paramagnetic? Yb^{2+} , Ce^{4+} and Sm^{3+}	3
	(d)	Cu^{2+} ions are coloured and paramagnetic whereas Zn^{2+} ions are colourless and diamagnetic. — Explain.	3
	(e)	Compare the properties of lanthanides and actinides with respect to the following properties:	4
		(i) colour and (ii) absorption spectra.	
		N.B. : Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.	

5009