WEST BENGAL STATE UNIVERSITY
B.Sc. Honours/Programme 2nd Semester Examination, 2019

## MTMHGEC02T/MTMGCOR02T-MATHEMATICS (GE2/DSC2)

Time Allotted: 2 Hours
Full Marks: 50
The figures in the margin indicate full marks.
Candidates should answer in their own words and adhere to the word limit as practicable.
All symbols are of usual significance.

## Answer Question No. 1 and any five from the rest

1. Answer any five questions from the following:
(a) Find an integrating factor of the differential equation $y^{2}+\left(x-\frac{1}{x y}\right) \frac{d y}{d x}=0$.
(b) What is the Clairaut's form for first order ordinary differential equation? Write down the general solution of it.
(c) Find the Wronskian of $x$ and $-x$ in $(-1,1)$.
(d) Find $\frac{1}{(D-1)^{2}}\left(x^{2} e^{3 x}\right)$, where $D=\frac{d}{d x}$
(e) Eliminate the arbitrary function $f$ and $F$ from the relation $y=f(x-a t)+F(x+a t)$.
(f) Determine the order, degree and linearity of the following PDE:

$$
x y\left(\frac{\partial^{2} z}{\partial x^{2}}\right)^{2}-2 \frac{\partial z}{\partial y}=1
$$

(g) Classify the following partial differential equation:

$$
z_{x x}-2 \sin x z_{x y}-\cos ^{2} x z_{y y}-\cos x z_{y}=0
$$

(h) Verify the condition of integrability for the equation

$$
\left(2 x+y^{2}+2 x z\right) d x+2 x y d y+x^{2} d z=0
$$

2. (a) Examine whether the following differential equation is exact and if so find the general solution.

$$
(\cos y+y \cos x) d x+(\sin x-x \sin y) d y=0
$$

(b) Obtain the general solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+4 y=\sin ^{2} x
$$

3. (a) Solve the following differential equation

$$
(p x-y)(x-p y)=2 p \text { where } p=\frac{d y}{d x}
$$

(b) Prove that $x, x^{2}$ and $x^{4}$ are independent solution of the differential equation

$$
x^{3} \frac{d^{3} y}{d x^{3}}-4 x^{2} \cdot \frac{d^{2} y}{d x^{2}}+8 x \frac{d y}{d x}-8 y=0
$$

Write down the general solution also.
4. (a) Solve: $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=x^{2} e^{3 x}$
(b) Solve: $\left(x^{2} D^{2}-x D+4\right) y=\cos (\log x)+x \sin (\log x)$, where $D=\frac{d}{d x}$.
5. (a) Solve: $\frac{d x}{d t}+\frac{d y}{d t}+2 x+y=0 \quad ; \quad \frac{d y}{d t}+5 x+3 y=0$
(b) Solve $\left(D^{2}+2 D+1\right) y=e^{-x} \log x$ by the method of variation of parameters.
6. (a) Solve: $\frac{a^{4} d x}{(b-c) y z}=\frac{b^{3} d y}{(c-a) z x}=\frac{c^{2} d z}{(a-b) x y}$
(b) Find particular integral of the differential equation $\left(D^{2}+49\right) y=x \sin x$, where $D \equiv \frac{d}{d x}$.
7. (a) Eliminate $a, b$ from the relation:

$$
z=a x^{2}+b y^{2}+a b
$$

(b) Solve the partial differential equation by Lagrange's method:

$$
y^{2}(x-y) p+x^{2}(y-x) q=z\left(x^{2}+y^{2}\right)
$$

8. (a) Find a complete integral of the following partial differential equation by Charpit's method:

$$
p x y+p q+q y=y z
$$

(b) Form a partial differential equation by eliminating the arbitrary function from the relation: $x+y+z=f\left(x^{2}+y^{2}+z^{2}\right)$
9. (a) Solve: $\left(x^{2}+y^{2}+z^{2}\right) d x-2 x y d y-2 x z d z=0$
(b) Solve: $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=x\left(1-x^{2}\right)$, given that $y=x$ is a solution of its reduced equation.

