WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 2nd Semester Examination, 2022

MTMHGEC02T/MTMGCOR02T-MATHEMATICS (GE2/DSC2)

Time Allotted: 2 Hours
Full Marks: 50

> The figures in the margin indicate full marks.
> Candidates should answer in their own words and adhere to the word limit as practicable.
> All symbols are of usual significance.

Answer Question No. 1 and any five from the rest

1. Answer any five questions from the following:
(a) Test whether the equation $(\sin 2 x-\tan y) d x=x \sec ^{2} y d y$ is exact or not?
(b) Find an integrating factor of the differential equation $\left(2 x^{2}+y^{2}+x\right) d x+x y d y=0$.
(c) Find the differential equation of the family of parabolas $y^{2}=4 a x$, where a is an arbitrary constant.
(d) Verify if the following pair of functions are independent

$$
e^{x}, 5 e^{x}
$$

(e) Given that $y_{1}(x), y_{2}(x)$ and $y_{3}(x)$ are solutions of $\left\{D^{2}+p(x) D+q(x)\right\} y=0$, where $D \equiv \frac{d}{d x}$. Show that these solutions are linearly independent.
(f) Verify the integrability of the following differential equation:

$$
y z d x=z x d y+y^{2} d z
$$

(g) Determine the order, degree and linearity of the following P.D.E:

$$
\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\left(\frac{\partial z}{\partial y}\right)^{2}=0
$$

(h) Eliminate the arbitrary functions ϕ and ψ from $z=\phi(x+i y)+\psi(x-i y)$, where $i^{2}=-1$.
2. (a) Determine the constant A of the following differential equation such that the equation is exact and solve the resulting exact equation:

$$
\left(\frac{A y}{x^{3}}+\frac{y}{x^{2}}\right) d x+\left(\frac{1}{x^{2}}-\frac{1}{x}\right) d y=0
$$

(b) Reduce the equation $\sin y \frac{d y}{d x}=\cos x\left(2 \cos y-\sin ^{2} x\right)$ to a linear equation and hence solve it.
3. (a) Using the transformation $u=x^{2}$ and $v=y^{2}$ to solve the equation

$$
x y p^{2}-\left(x^{2}+y^{2}-1\right) p+x y=0 \quad, \quad \text { where } p=\frac{d y}{d x}
$$

(b) Solve: $\frac{d y}{d x}+\frac{a x+h y+g}{h x+b y+f}=0$
4. (a) Solve by the method of variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}+a^{2} y=\cos a x
$$

(b) Show that e^{x} and $x e^{x}$ are linearly independent solutions of the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0$. Write the general solution of this differential equation. Find the solution that satisfies the condition $y(0)=1, y^{\prime}(0)=4$. Is it the unique solution?
5. (a) Solve: $\left\{(5+2 x)^{2} D^{2}-6(5+2 x) D+8\right\} y=8(5+2 x)^{2}$, where $D \equiv \frac{d}{d x}$.
(b) Solve the following equations:

$$
\frac{d x}{d t}+4 x+3 y=t \quad ; \quad \frac{d y}{d t}+2 x+5 y=e^{t}
$$

6. (a) Verify that the following equation is integrable, find its primitive:

$$
\begin{equation*}
z y d x+\left(x^{2} y-z x\right) d y+\left(x^{2} z-x y\right) d z=0 \tag{3}
\end{equation*}
$$

(b) Solve: $\left(4 x^{2} y-6\right) d x+x^{3} d y=0$
7. (a) Eliminate the arbitrary function ϕ from the relation $z=e^{m y} \phi(x-y)$.
(b) Solve the PDE by Lagrange's method:

$$
p x(x+y)-q y(x+y)+(x-y)(2 x+2 y+z)=0
$$

8. (a) Find the particular solution of the differential equation

$$
(y-z) \frac{\partial z}{\partial x}+(z-x) \frac{\partial z}{\partial y}=x-y
$$

which passes through the curve $x y=4, z=0$.
(b) Determine the points (x, y) at which the partial differential equation

$$
\left(x^{2}-1\right) \frac{\partial^{2} z}{\partial x^{2}}+2 y \frac{\partial^{2} z}{\partial y \partial x}-\frac{\partial^{2} z}{\partial y^{2}}=0
$$

is hyperbolic or parabolic or elliptic.
9. (a) Solve: $\left(x^{2}+y^{2}+z^{2}\right) d x-2 x y d y-2 x z d z=0$
(b) Solve in particular cases:

$$
\frac{d^{2} y}{d x^{2}}+y=\sin 2 x \quad ; \quad \text { when } x=0, \quad y=0 \quad \text { and } \quad \frac{d y}{d x}=0
$$

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

